Test 1 Computational Methods of Science/Computational Mechanics, December 2019

Duration: 2 hours.
In front of the questions, one finds the points. The sum of the points plus 1 gives the end mark for this test. Criteria used for the grading are: demonstration of understanding, logical reasoning, correct use of terminology, correctness of results.

Consider on $(0,1)$ the differential equation

$$
-\frac{d}{d x}\left(\exp (x) \frac{d u}{d x}\right)+\frac{1}{1+x} u=x
$$

with boundary condition sets:

1. $u(0)=u(1)=0$,
2. $u(0)=8$ and $u(1)=-3$,
3. $u(0)=0$ and $\frac{d u}{d x}(1)+u(1)=2$.
4. [1.5] Derive the weak (Galerkin) form and the associated function space of this equation for boundary conditions set 1 . Give also the bilinear and linear form, where in the bilinear form only first derivatives appear.
5. [1.0] Show that the bilinear form occurring in the previous part is positive definite.
6. [1.5] Given the interpolation points $x_{i}=i h$, with $h=1 / n$ on which we define the space of piecewise linear interpolation polynomials V_{h} in which each element u_{h} has the property $u_{h}(0)=u_{h}(1)=0$. Determine the stiffness matrix and the load vector resulting from the weak problem on this subspace. It is enough to finally give the integrals which have to be determined.
7. [1.0] Show that the matrix determined in the previous part is symmetric and positive definite.
8. [0.5] Give the associated minimization problem. Also here, express your final results in integrals.
9. [1.5] What changes in the weak form and function space if we replace boundary conditions set 1 by set 2 ?
10. [1.7] What changes in the weak form and function space if we replace boundary conditions set 1 by set 3 ?
11. [0.3] Suppose we use instead of piecewise linear polynomial interpolation piecewise cubic polynomial interpolation. What will be the expected order of convergence of $\left\|u-u_{h}\right\|$ and of $\left\|u-u_{h}\right\|_{H_{1}}$, respectively? Here u is the exact solution and u_{h} the solution on the subspace.
